Battery replacement of Panasonic hair trimmer, Models ER1410 and similar with standard AA NiMH batteries

I own a Panasonic ER1410 hair trimmer. Unfortunately, after a few years of service, the batteries did no longer charge. I continued to use it in wired mode. But it is by far no comfort to have the cable dangling around. So after some time I decided to check for a battery replacement.
There are several offers for a set of replacement batteries available online. But these are quite expensive. Luckily the batteries are NiMH rechargable ones in AA / Mignon size. The only difference from the standard AA batteries is a pin like connector on both poles, which slide in a metal groove for contact. The design is replacement-friendly, as the batteries are not soldered to the PCB. Instead, there is a 2 slot battery carrier, designed for the pin like connectors.
When a standard AA rechargable battery is inserted to the battery carrier, the battery has not quite good contact. To fix this, use a set of pliers to bend the metal contacts a bit. The batteries will have sufficient contact and the hair trimmer will work well!

Here are the steps I had to follow:
1. remove trimmer cartrige
2. unscrew all 5 screws (see photo for positions)
3. remove black round part at charger connector
4. lift black bottom part
5. remove batteries and remember polarities!
6. bend metal contacts inwards with pliers until new batteries have firm contact
7. insert new 1.2V NiMH AA batteries (check polarity!)
8. close trimmer and fasten all 5 screws
9. test operation and charging

Disclaimer:
This is a guide put together as reference for me. If you follow this description, you will do so on your own risk. I will not be held responsible for any damage or injury caused by a DIY repair. Be aware, that using wrong batteries (i.e. non-rechargable, wrong type / Voltage, …) or batteries installed wrong may cause serious injuries and carry a high risk of fire!

Cratered Moon Cake for Space Birthday Party

Creating birthday cakes is a quite difficult task, when you want to impress the guests and the birthday boy all toghether by visual appearance and taste. The task gets even more challenging, when you dislike fondant icing…

This cake is a stack of 4 circles in different sizes of white almond cakes. The cakes are combined and frosted with a mascarpone-yoghurt cream with a bit of black food color for a touch of grey.

The craters are circles of white choccolate with grey food color (use food color soluble in choccolate, others will break the choccolate!). I simply scooped the choccolate on backing sheets to form circles with a bit of uneven surface.

Solar prominence timelapse

I had the chance to borrow a Hydrogen alpha filter for solar observation. As the weather was just perfect, I set up my 80/600 refractor with the filter and a camera attached. Every 15 seconds I captured 400 frames for later processing. After 4 hours, my hard disk was loaded with 850GB of data…

Now, more than 2 days of stacking, aligning, optimizing, … are over. The resulting image sequence is simply fascinating and beautiful:

Found my planetary camera and tested on Moon

As the nights are really short right now, I set up my scope at home and took a look at the moon. Seeing was not too good, but in moderate magnification, the moon still was pleasant to look at. So I thought, I did not shoot the Moon or the planets for a while. Why not give it a shot? I took my my planetary camera which was stored in their box for more than 2 years and set up for imaging…

For the “first” results, I am really pleased. Now I think I have to optimize and go for it again soon 🙂

Image properties:
102mm f7 APO, ASI120MM-S, RGB+IR Filters
Copernicus: 10% of approximately 5000 frames
Plato: 10% of approximately 11000 frames

A splendid night out in the countryside

Last night I spent near my home town – a short 25 minutes drive – to a place I frequently used years back for astronomy. It is a quite dark spot, though the light pollution is still obvious. Nevertheless I tried to go for some deep sky objects, getting as much observation / camera time as possible in the short nights of June.

My list of objects was not too short. All of them were well placed in the sky and really nice to see :-). So here you go:
1) Hercules cluster M13 (Sony A99ii, 800mm f4, 2xTC, 27x120s, ISO3200)
2) Virgo galaxies M60, M87, M90, M100 (Sony A6000mod, 70-200mmf2.8 @ 200mm f4.5, 22x300s, ISO3200)
3) Virgo galaxy M90 – though I intended M87 😉
4) Whirlpool galaxy M51 (Sony A99ii, 800mm f4, 2xTC, 6x360s, ISO3200)
5) Andromeda galaxy M31 (Sony A6000mod, 70-200mm f2.8 @ 200mm f4.5, 5x30s, ISO3200) – I made an error in exposure time, so instead of 5×300 I ended up with 5x30s 🙁
6) Jupiter (I did not pack my planetary imaging camera – so I used the same setup with Sony A99ii and 800mm scope at 1600mm)
7) Saturn (same as Jupiter)

And far too late (at 01:30) I set up my timelapse camera for a night-to-day movie. The milkyway was beautifully placed just above the pasture. The resulting video clip is below.

Star cluster M5 from the city

Finally a couple of cloud free evenings are here! So lets see, what is to see from the city…

From a balcony facing south across a city, there usually is not too much to expect. This time, I chose the star cluster M5, which is quite bright an was not too hard to see in the scope. Sure, it does not hold to a darker spot away from light polluted city skies. But hey, there is still a lot to see:

Image properties: 75x 40s, 800mm f/4, Sony A99ii @ ISO 1600

A small telescope meeting

After the completely washed away telescope meeting in the beginning of May, I tried to meet up with a few enthusiasts with quite promising weather prospects. Unfortunately the cloud cover did not vanish all the way. Even though there was quite a lot of clouds passing over, I could manage to snap some light frames from M51 – the Whirlpool Galaxy.

Image properties: 16x 180s, 714mm f/7, Alpha 6000 modified

It was fun chatting and also delicious being hosted with creole food 🙂 which compensates for almost any cloudy night!

Dark Sky Logger – my extended DIY Sky Quality Meter

A few weeks back I had the DIY Sky Quality Meter demo setup working (see here). My primary target in building a Sky Quality Meter was to have a complete all-in-one ambient conditions logging device. So to finalize this project, I added a micro SD-Card reader, real-time clock, barometric pressure sensor and a rechargeable battery. I could manage to squeeze all the code into an Arduino nano :-). With the small footprint of the Arduino nano, I could build a case box (3D-printed) with only 123x68x34mm external dimensions.

One essential part of the case is a chamber for the TAOS TSL237S sensor. The status LEDs of the Arduino did alter darkness readings severely. So any light apart from the night sky has to be shielded from the sensor!
Furthermore, the sensor requires a IR-block and color correction filter, to work comparable to the Unihedron Sky Quality Meter. As described here, Unihedron uses a HOYA CM-500 filter. I could find an almost identical filter, which is now included in the case as front cover of the sensor chamber.

My Arduino code may lack some fine tuning (forgive me, but I will not publish my source code. It would not be fair to Unihedron, who had all the development to build the original SQM device!). But the sensor readings are comparable to the second fraction digit in most cases to the SQM unit I could use for testing. This is sufficiently precise to me. I do refresh all the values (darkness, sensor frequency reading, temperature, humidity, pressure, dew point, calculated altitude, battery voltage, presence of SD card as well as time and date) every 5 seconds. This is someway insane, as a refresh rate of 30 to 60 seconds would still be very high 😉

With a freshly charged 18650 battery, my device may record for more than 50 hours. So even a weekend trip would be no issue.

For all curious folks out there, this is the parts list:
– Arduino nano v3
– DS1307 RTC module
– BME280 – temperature, humidity and pressure module
– Micro-SD Card interface
– 1.3″ OLED Display (128×64 Pixel)
– 18650 Lithium battery carrier with charger and 5V output
– TAOS TSL237S sensor
– 8mm UV-IR Cut filter
– 3D printed case

And this is the device:

This site uses cookies. By continuing to use the site (including navigation and scrolling), you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close