3D printer enclosure made of IKEA LACK tables

During refurbishing my office, I ditched the cupboard, where I had my 3D printer set up with some dust protection. The dust protection was a simple transparent table foil. It was sufficient enough to have the printer running. But it was by no means a proper enclosure. Temperature changes as well as air currents could still influence prints.
Now, I wanted to enclose my printer properly. First off, I thought of constructing something entirely from scratch. But upon searching through web pages and blogs, I found several enclosures incorporating IKEA LACK tables. The LACK tables are really cheap and fit almost perfectly the size of my Prusa i3 clone printer.

Upon the next opportunity, I stopped by IKEA and a hardware store to purchase all parts required:
2x IKEA LACK table
3x 50x55cm HDF furniture backing (5mm HDF wood with one side in white foil coating)
1x 45x35cm plywood board, 10-14mm (to mount power supply and Raspberry-Pi)
1x 50x50cm acrylic sheet (4mm strength)
2x hinges
1x door knob
1x magnetic furniture lock

further parts from electronics store or internet order:
2x 50cm LED strips
1x 80mm fan plus cover
2x PC4-6 quicklock tube fixtures
200cm PTFE tube with 2mm inside diameter
1x Mains power connector with switch and fuse
1x RJ45 network connector
1x 12V to USB power adapter with 4A

3D printed parts:
4x IKEA LACK table – leg extender
2x printer mount
1x PC4-6 mounting bracket for print-head
1x case for 12V to USB power adapter
1x mounting brackets for Raspberry-Pi
6x LED strip mounting brackets
1x Web-Cam mount

Construction:

  1. Cut the legs to length
    My enclosure needs to be 50cm in height, inside. The IKEA LACK table legs are 40cm in height. therefore another 10cm legs are required. Use a wood saw to cut 4 legs. As they are hollow, this is done in a moment. The other 4 legs are left as they are.
    Hint: the legs have 2 layers of wood on the pre-drilled end. The other end has no second layer.
  2. Drill holes to the 40cm legs lower end
    Mark the center of the legs and drill a 4mm hole to each of them.
  3. Drill holes to one of the tables top part
    You may drill through the already existing holes, or mark the position on the top side, where the legs will be mounted
  4. Prepare sides
    Use a medium grid sanding paper to chamfer the edges of the HDF sheets, so they fit perfectly.
  5. Prepare connectors and electronics
    The left side is enforced with the plywood board, so that connectors and electronics may be mounted properly. Mark the position of the plywood board, so that it fits between the 2 legs. Screw-mount the board with at least 6 screws.
    Drill (or cut) a hole for the 80mm fan at the rear top position. Don’t forget the 4 mounting holes!
    Then, mark the positions of power and network connectors. Drill and file the holes to size.
    When the holes fit, mount the connectors.
    Next, mount power supply, power adapter and Raspberry. Pay attention to not have your printer collide with one of the parts!
  6. Add PC4-6 connector
    On the left side pane, I have the material feed through on the upper front part. Here, the PTFE tube may flex freely, when the print head moves
  7. Build the LACK tables
  8. Attach LED strips to the upper LACK table
  9. Place 3D printer on lower part
  10. Stack the second LACK table with leg extenders on top of the other
  11. Screw mount the left side
    You may pre-drill 2-3mm holes for the screws, if you like. But the material is soft enough to go without.
  12. Connect all cables to printer, power supply, LED, …
  13. Attach web-cam mount to rear side
    The web cam is best placed approximately 10cm from top
  14. Screw mount rear and right side
  15. Prepare door
    Center the hinges on either left or right front leg. Mark required holes to leg as well as acrylic sheet.
    Mark door knob position on acrylic sheet and opposite leg.
    Drill holes in acrylic sheet with sharp drill bit and low pressure.
  16. Use sink-head screws to mount hinges
  17. Attach door knob and magnetic lock